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This article presents a nested fork-join queueing network model of the synchronized ground processing of
aircraft transiting an air� eld. The queueing network is analyzed using a decomposition algorithm that provides
approximatenetwork performance measures such as throughputand expected queue lengths.The results produced
are comparable in accuracy to those produced by simulation, but are generated in much less elapsed time. Using a
case study of contingency operations at a military mobility air� eld, we demonstrate the model’s utility for rapidly
developing important insights into operational performance.

I. Introduction

T HE success of a modern military campaign often depends on
the rapid air transport of critical resources to a distant the-

ater of operations. To accomplish this mission, the U.S. Air Force
employs a � eet of large cargo aircraft to move people and equip-
ment through a worldwide network of air� elds. To plan and execute
large deployments, commanders and mobility planners rely on so-
phisticated modeling and analysis methods to provide meaningful
estimatesof operationalcapability.Particular attentionmust be paid
to throughput capacity and resource bottlenecks at key air� elds.

To gain insight into air� eld performance, transportationanalysts
normally study the � ow of aircraft through a series of synchronized
ground processingactivities using high-resolutionsimulation mod-
eling techniques. In this paper, however, we approach the problem
throughan analyticalqueueingnetwork model. Our approach is not
meant to completely replace high-resolutionmodeling, which may
be necessary for studying complex air� eld processing or resource
allocation schemes. Rather, the approach is designed to provide
rapid insights into the relationship between air� eld resource levels,
the � ow of mobility aircraft, and air� eld throughput capacity. The
model is more general than an earlier method offered by Dietz,1

which required restrictive assumptions about service time distribu-
tions and the aircraft arrival process.

II. Analytical Air� eld Model
The general task precedence graph for the ground � ow of an air-

craft is shown in Fig. 1. In this graph each box represents a task
that may be required when an aircraft visits the air� eld. The � ow of
precedence among tasks is from top to bottom, that is, tasks at the
top of the graph must be completed before the tasks below them.
Tasks that begin at the same time are immediately preceded by
an appropriately labeled horizontal bar. “Refuel” and “concurrent
maintenance”are examplesof tasks that canbeginsimultaneously.If
a bar labeled “synchronize”immediately follows two or more tasks,
those tasks must all be complete before any task below the bar can
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begin. For example, the “liquid oxygen servicing” and “cargo on”
tasks must be complete before the “backout/taxi” task can begin.

If we model the service providers as “stations,” the aircraft as
“customers” that move through the network of stations, and the
numberof parkingspotsas the networkcapacity N , we canconstruct
anopencapacitatedqueueingnetwork2 that is logicallyequivalentto
the � ow of tasks shown in Fig. 1. To developan effectivesolutional-
gorithm, it is helpful to transformthe openqueueingnetwork into an
equivalent closed network. This transformation is accomplishedby
inserting an “arrival” station into the network and arti� cially setting
the population of the closed network equal to the original network
capacity. The arrival station essentially represents the portion of
the entire airlift system that operates outside the air� eld boundary.
When all N customers saturate the air� eld portion of the network,
the arrival station is idle, and no further arrivals can be generated.
However, when the air� eld is not occupied at capacity at least one
customer occupies the arrival station, and so arrivals are generated
at speci� ed intervals (arti� cial service times for the single-server
station).

The graph of the resulting closed nested fork-join queueing net-
work, which we will call the Analytical Air� eld Model (AAM), is
shown in Fig. 2. The diamond symbols containingF and J represent
fork-joinconstructsthat captureconcurrentactivities.Aircraftarriv-
ing at a fork node can be viewedas generatingtemporaryclones that
are rejoined into a single customer at the corresponding join node
when all activities along each clone path are complete. A descrip-
tion of the network stations is providedin Table 1. Some stations are
visited by all arriving aircraft, whereas others are visited according
to speci� ed probabilities.

To maintain model tractability, we impose the following simpli-
fying assumptions:

1) The � rst assumption is the independenceof customerbehavior.
The aircraft processing requirements are a function of the � ight
schedule, the aircraft manifest or en-routeevents, and are not linked
explicitly to any � ight line activities. Because the aircraft behave
independently,we assume that the probabilitythat an aircraftvisits a
particularservicestation(or a subnetworkof stations) is independent
of the number and type of aircraft at the stations in the network.

2) Steady-state conditions are the second assumption. During
wartime or a contingency, mobility operations are normally con-
ducted around the clock over a period of days, weeks, or even
months. Therefore, it is assumed that equilibrium conditions are
maintained after some initial warm-up period.

3) The third assumption is single customer class. Normally, a
mobility air� eld processes different types of aircraft, which may
have different service time distributions at certain network stations
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and different routing probabilitieswithin the network. In the AAM
these differenceswill not be explicitly modeled. Although this sim-
pli� cation may appear limiting, useful insights can still be gained
by aggregating multiple aircraft classes through the appropriate
selection of routing probabilities, service time distributions, and
the arrival law. This approach will produce aggregate performance
measures that can be used to gain fundamental insights into air� eld
capabilities.

III. Model Solution Through Product-Form
Approximation

Exact calculationof network performancemeasures is not possi-
ble becauseof analyticalcomplexity,but we can obtainapproximate

Fig. 1 Task precedence graph.

Fig. 2 AAM topology.

the performance measures accuratelyusing a type of queueing net-
work decompositionknown as product-formapproximation(PFA).3

PFA methods use information about the � ow in the network to con-
struct a tractable network that has approximately the same steady-
state behavior;theperformancemeasuresof the new network,which
can bedeterminedexactlyusinga numberof availablealgorithms,4;5

approximate those of the original network.
In a product-form approximation the original network is parti-

tionedintoa set of subnetworks,whichare analyzedin isolation(that
is, as independent networks) to get approximate throughput levels
that are conditioned on subnetwork population. For each subnet-
work an associated exponential server with load-dependentservice
rates is constructed; these service rates are set equal to the condi-
tional throughput levels of the original subnetwork. The through-
put levels are calculated in such a way that � ow into and out of
the exponential station closely approximates the � ow behavior of
the original subnetwork. A separable network is then formulated
by replacing the subnetworks in the original network topology by
the � ow-equivalent servers; the performance measures of this net-
work are used as approximations of those of the original network.
The error in such an approximation originates from two sources:
the assumption of exponential service and the approximationof the
conditional throughputs through isolated analysis.

Building on the work of Dallery and Cao,6 Baynat and Dallery
identifyfour conditionsthat a networkpartitionmust satisfy in order
for a PFA to be feasible (reasonably accurate)3:

Table 1 AAM station descriptions

Station Activity description Visit probability

0 Interarrival time 1
1 Landing 1
2 Taxi/park 1
3 Maintenance (not concurrent with refueling) ·1
4 Refuel ·1
5 Liquid oxygen servicing ·1
6 Maintenance (concurrent with refueling) ·1
7 Cargo handling ·1
8 Standard ground delay 1
9 Backout/taxi 1
10 Takeoff 1
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1) Customers enter and leave subnetworks as single entities.
2) The behavior of a subnetwork is independent of the behavior

of its complement.
3) The routingbetween a subnetworkand its complement is inde-

pendentof thenumberanddistributionof customersthe subnetwork.
4) Split customers (clones) do not transition between subnet-

works.
If a fork-join queueing network (FJQN) has been feasibly parti-

tioned using the preceding guidelines, then any subnetework con-
taining a fork-join construct can be analyzed using either aggrega-
tion or Marie’s method to get approximate conditional throughput
levels. A discussion of these approaches follows, together with a
summary of how each method can be used to analyze a FJQN.

A. Aggregation

Aggregationhas its roots in the work of Avi-Itzhakand Heyman7

and Chandy et al.8;9 In this method the subnetwork to be isolated
is analyzed as a closed, independent network. This network is
formed by short-circuiting the subnetwork’s complement (that is,
removing the complement from the network). Approximate condi-
tional throughput levels are obtained by calculating the throughput
of this new subnetwork for � xed population levels. Chandy et al.
showed that these conditional throughputs are exact if the original
network is separable.8 In the case where the network is nearly com-
pletely separable (that is, the behavior of the subnetworks is nearly
mutually independent), the error induced by using aggregationwill
be small.3

If the conditional throughput levels of a FJQN are to be obtained
using the aggregation technique, the isolated fork-join subnetwork
(FJSN) would be formed by short-circuiting its complement, as in
Fig. 3. Baynat and Dallery propose transforming this isolated net-
work by creating separate customer chains for each clone and com-
bining the fork node and join buffer into a multichain synchroniza-
tion station with a deterministiczero service time and synchronized
departures. The equivalent network is shown in Fig. 4.

Fig. 3 Isolated fork-join subnetwork for the aggregation method.

Fig. 4 Transformed subnetwork for the aggregation method.

B. Marie’s Method

The central idea of Marie’s method10;11 is to analyze the subnet-
work of interest as an isolated, open network with � nite capacity
and load-dependentPoisson arrivals. The load-dependent through-
put levels of the isolated subnetwork become the load-dependent
mean service rates of the associated exponential server.

Let N be the number of customers in the original closed network,
and let ni be the number of customers in subnetwork i (0 · ni · N ).
Further,de� ne¸i .n i / and Qºi .ni / as thearrivalrateandtheconditional
throughputof customers at subnetwork i; ni D 0; : : : ; N . Let ¹i .ni /
be the load-dependentservicerate for theassociated� ow-equivalent
exponential server, ni D 0; : : : ; N .

Marie’s methodmakes useof threesetsof foundationalequations.
The � rst equation set, which is derived by applying the Marginal
Local Balance Theorem,12 establishes the throughput levels of the
isolated subnetwork as a function of load n i :

Qºi .ni / D ¸i .ni 1/
QPi .ni 1/

QPi .ni /
; ni D 1; : : : ; N (1)

The probabilities QPi .n i / are the marginal probabilities that ni cus-
tomers occupy subnetwork i ; these are found by analyzing the sub-
network in isolation as just described. We get the load-dependent
service rates of the � ow-equivalent exponential server by setting
them equal to the throughput levels of the isolated subnetwork:

¹i .ni / D Qºi .n i /; ni D 1; : : : ; N (2)

The � nal equation set, which is also derived using the Marginal
Local Balance Theorem, ensures local balance in the approximate
product-form network:

¸i .ni / D ¹i .ni C 1/
OPi .ni C 1/

OPi .ni /
; ni D 0; : : : ; N 1 (3)

The approximate occupancyprobabilities OPi .ni / are derived by an-
alyzing the associated product-form network with any appropriate
technique.4;5

Marie’s algorithmsolves Eqs. (1–3), for the conditional through-
puts using � xed-point iteration. The algorithm is as follows:

1) Choose initial values ¹i .ni / for n i D 1; : : : ; N .
2) Calculate ¸i .ni / using Eq. (3).
3) Analyze the station in isolation to get QPi .n i /, ni D 0; : : : ; N .
4) Use Eq. (1) to get Qºi .ni /, ni D 1; : : : ; N .
5) Calculate the load-dependent service rates ¹i .n i / for the re-

placement server using Eq. (2).
6) Repeat steps 2 through5 until the relative improvementin each

¹i .ni / value is less than some speci� ed tolerance.
The usual measure of improvement is the maximum relative change
in the elements of the service rate vector:

max
i;n i

­­­­
¹

.m/

i .ni / ¹
.m 1/

i .ni /

¹
.m 1/

i .ni /

­­­­< " (4)

where m is the iteration index and " is the selected tolerance (typi-
cally set at 10 3 or 10 4 ).

Marie’s method is cited in several different studies as an accu-
rate technique for decomposing nonseparable networks.13 17 The
method compares favorably to aggregation and provides superior
estimates of expected queue lengths in many cases.3 Bondi and
Whitt � nd that Marie’s method is the most accurate and stable of
the decomposition techniques they examine.16

Baynat and Dallery have extended Marie’s method so that it can
be used to analyze closed networks with R (>1) chains. We employ
multiple chains to distinguish between clone customers within a
fork-join. The derivation is similar to that for the single-chain case,
although each equation set must now be generated for each of the
R chains. With the obvious extensions to the notation, the multiple-
chain analogs to Eqs. (1–3) are

Qºr i .nr i / D ¸r i .nr i 1/
QPr i .nr i 1/

QPr i .nr i /

nr i D 1; : : : ; Nr ; r D 1; : : : ; R (5)
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¹r i .nr i / D Qºr i .nr i /; nr i D 1; : : : ; Nr ; r D 1; : : : ; R (6)

¸r i .nr i / D ¹r i .nr i C 1/
OPr i .nr i C 1/

OPr i .nr i /

nr i D 0; : : : ; Nr 1; r D 1; : : : ; R (7)

Marie’s method for multiple chains is executed as follows15:
1) Choose initial values ¹r i .nr i / for r D 1; : : : ; R and nr i D 1;

: : :, Nr .
2) For r D 1; : : : ; R, calculate ¸r i .nr i / using Eq. (7).
3) Analyze the station in isolation to get QPr i .nr i /, r D 1; : : : ; R

and nr i D 0; : : : ; Nr .
4) Use Eq. (5) to get Qºr i .nr i /, r D 1; : : : ; R and nr i D 1; : : : ; Nr .
5) Calculate the load-dependentservice rates ¹r i .nr i / for the re-

placement server for chain r using Eq. (6).
6) Repeat steps 2 through 5 until the relative improvement in the

¹r i .nr i / values is less than some speci� ed tolerance value.
The usual stopping test is similar to that given in Eq. (4), except

that the maximization is also performed over the R chains in the
network.

If Marie’s method is to be used to decomposea FJQN, the isolated
FJSN would be formed as an open, capacitated network with load-
dependent Poisson arrivals; this would, in turn, be reformulated as
the equivalent closed network shown in Fig. 5. Notice that the sta-
tion representing the Poisson arrival process has mean service rate
¹0.n/ D ¸.N n/; n D 1; : : : ; N . Baynat and Dallery’s transforma-
tion of this network is similar to the aggregationcase, except that the
join buffer is combined with the external Poisson arrival process to
form a timed synchronizationstation.This station has mean service
rate ¹0.n0/, where n0 D minr .n0r / and n0r is the number of clones
from chain r waiting in the join buffer. The equivalent network is
shown in Fig. 6.

Fig. 5 Isolated fork-join subnetwork for Marie’s method.

Fig. 6 Transformed subnetwork for Marie’s method.

Fig. 7 Using the SC approximation with Marie’s method.

IV. Short-Circuit Approximation
A. Description

Suppose we have a closed queueing network containing a FJSN
with a probabilisticload pattern,meaning that a customermay com-
pletely bypass at least one embedded subnetwork, say the i th, with
positiveprobability pi . An intuitiveway to model this behavior is to
introducefeedback loops into the appropriatechains in the isolated,
reformulatedFJSN; thesefeedbackloopsallowa customerto bypass
all stations in the chain and return immediately to the synchroniza-
tion station. This strategy, which we will call the short-circuit (SC)
approximation, is graphically illustrated in Fig. 7 (Marie’s method
has been used in the reformulation of the isolated FJSN).

The SC approximationrequires an additionalassumption that the
customer clones in the isolated FJSN can match interchangeably.
SC producesapproximateresults because the matching assumption
may not be true for the original network model. An advantage of
this approach is that the resulting expected increase in throughput
induced by the assumption of interchangeability should partially
offset the observed tendency of Marie’s method to produce conser-
vative approximations.18

B. Analyzing the Synchronization Station

The feedback loops just describedcan be dealt with in one of two
ways: they can be incorporated into the internal Markov process
of the synchronization station (internal feedback), or they can be
left as part of the product-formapproximation to the isolated FJSN
(external feedback). In the latter case all that is required is to adjust
the relative frequencyof visits (“visit ratios”) for the isolatedFJSN.
When the feedback loops are incorporatedinto the Markov process,
however,the formulationis more complex.The followingdiscussion
develops the structure of the Markov process for the case of two
clonechainswithin a fork-joinconstruct.Extension to three or more
chains is straightforward.

We � rst consider the case where aggregation is used to decom-
pose the original network. Let ni equal the number of chain i cus-
tomers in the join buffer (i D 1; 2), and let .n1; n2/ be the state of
the synchronizationstation. Because the Markov process incorpo-
rates a join operation, the only feasible states are those for which
n1 D 0 or n2 D 0 (or both). State transition behavior is complicated
by the fact that one or both matching customers can return to the
synchronizationin zero time following a match.

Assume that n1 D 0 and 0 · n2 · N (where N is the network
population). De� ne ¸i .ni / as the arrival rate of chain i customers,
and let the bypass probability pi be the probability that a chain i
customer leaves the synchronizationstation. Further, let

P1. j/ D Pr.chain 1 customer causes jchain 2 departures
before leaving/; j < n2

and let

P0
1 D Pr.chain 1 customer causes n2 chain 2 departures,

and stays at station/
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Table 2 State transitions for the aggregation method

Transitions to Rate Conditions

.0; n2 j / P1. j/¸1.0/ n2 2 [0; N ]; j 2 [0; n2]

.0; 1/ P0
1 ¸1.0/ n2 2 [1; N ]
¸1.0/ n2 D 0

.0; n2 C 1/ ¸2.0/ n2 2 [0; N 1]

The states that state .0; n2/ transitions to, as well as the appropriate
transition rates, are in Table 2.

We need to derive the probabilities P1. j/ and P0
1 . To get P1. j/,

we condition on the number of feedback loops required to produce
j chain 2 departures:

P1. j/ D
1X

i D j

[Pr. j chain 2 departuresj chain 1 departure

after i th loop/ Pr.chain 1 departure after i th loop/]

Clearly

Pr.chain 1 departure after i th loop/ D .1 p1/
i 1 p1

and

Pr. j chain 2 departuresj chain 1 departure after i th loop/

D
³

i 1

j 1

´
.1 p2/i j p j

2

Therefore,

P1. j/ D
1X

i D j

³
i 1

j 1

´
.1 p2/i j p j

2 .1 p1/i 1 p1

D
1X

i D 1

³
i 1 C j 1

j 1

´
.1 p2/i 1 p j

2 .1 p1/i 1 C j 1 p1

D
p j

2 .1 p1/
j 2 p1

.1 p2/[1 .1 p1/.1 p2/]
j 1

1X

i D 1

³
i 1 C j 1

j 1

´

£ [.1 p1/.1 p2/]i [1 .1 p1/.1 p2/] j 1

D
p j

2 .1 p1/
j 2 p1

.1 p2/[1 .1 p1/.1 p2/]
j 1

£
©
1 [1 .1 p1/.1 p2/]

j 1
ª

(8)

because each term in the in� nite series is a negative binomial
density.19

Because the probability that a chain 1 customer remains in the
system after n2 chain 2 departures is .1 p1/i , we have that

P0
1 D P1.n2/

1 p1

p1
D

³
pn2

2 .1 p1/
n2 1

.1 p2/[1 .1 p1/.1 p2/]n2 1

´

£
©
1 [1 .1 p1/.1 p2/]

n2 1
ª

(9)

The probabilities P2. j/ and P0
2 are easily derived by exchanging

subscripts in Eqs. (8) and (9).
To ef� ciently derive the transition rate matrix Q for the

Markov process, we � rst order the 2N C 1 states as follows:
.N ; 0/, .N 1; 0/, : : : ,(1,0), .0; 0/, .0; 1/; : : : ; .0; N 1/, .0; N /.
Table 3 presents a complete description of the elements of the tran-
sition matrix.

When Marie’s method is used, the processwith feedback loops is
somewhat simpler to formulate because of the nonzero delay after
each synchronization.In this case states exist where both n1 and n2

are nonzero.The states that .n1; n2/ transitionsto, together with the
appropriate transition rates, are shown in Table 4.

The transition rate matrix Q can be ef� ciently generated by
ordering the states � rst on n1, then on n2: .0; 0/, .0; 1/; : : : ;

Table 3 Column entries for row s of Q;
aggregation method

Column index Rate Conditions

s C j P2. j/¸2.0/ s 2 [1; N ]
N C 2 P0

2 ¸2.0/ j D 1; : : : ; N C 1 s
s 1 ¸2.N C 1 s/ s 2 [2; N C 1]
s j P1. j/¸1.0/ s 2 [N C 2; 2N C 1]
N P0

1 ¸1.0/ j D 1; : : : ; s N 1
s C 1 ¸1.s N 1/ s 2 [N C 1; 2N ]

Table 4 State transitions for Marie’s method

Transitions to Rate Conditions

.n1 C 1; n2/ ¸1.n1/ n1 < N

.n1; n2 C 1/ ¸2.n2/ n2 < N

.n1 1; n2/ p1.1 p2/¹0.min[n1; n2]/

.n1; n2 1/ .1 p1/ p2¹0.min[n1; n2]/ n1; n2 > 0

.n1 1; n2 1/ p1 p2¹0.min[n1; n2]/

Table 5 Column entries for row s of Q; Marie’s method

Column index Rate Conditions

s C N C 1 ¸1.n1/ n1 < N
s C 1 ¸2.n2/ n2 < N
s N 1 p1.1 p2/¹0.min[n1; n2]/
s 1 .1 p1/p2¹0.min[n1; n2]/ n1; n2 > 0
s N 2 p1 p2¹0.min[n1; n2]/

.N; N 1/, .N ; N /. When this ordering scheme is followed, the
nonzero entries in row s of Q can be generated according to the
rules shown in Table 5.

C. Extension to Nested FJQNs

Although nesting of fork-join constructs is not explicitly ad-
dressed in the open literature, it makes sense to deal with them
by applying Baynat and Dallery’s uni� ed theory3 in a hierarchical
manner. All that is necessary is that the assumptions required by the
uni� ed theory be satis� ed by the network partitions at all levels of
the hierarchy.

For the purposeof illustration,supposewe have a FJQN with two
FJSNs, one nested within the other. In this case hierarchicaldecom-
position requires isolated analysis of structures at three levels, as
illustratedin Fig. 8: 1) the nested fork-joinconstruct (network 1); 2)
the FJSN embedded in the nested construct, together with the outer
synchronizationstation (network 2); and 3) the inner synchroniza-
tion station (network 3). Other individual stations may need to be
analyzed in isolation at any of these three levels.

D. ComputationalExperience

We conducted a numerical study to examine the performance of
the SC approximation method when applied to FJQNs. Four candi-
date strategies were evaluated: 1) SC with internal feedback, using
Marie’s method to decompose the original network (SCMI); 2) SC
with external feedback, using Marie’s method to decompose the
original network; 3) SC with internal feedback, using aggregation
to decompose the original network; and 4) SC with external feed-
back,usingaggregationto decomposethe originalnetwork (SCAE).
A variety of different network con� gurations was studied to ensure
robust conclusions.18 The results suggestthat SC is a useful and gen-
erally highly accurate, approximation technique for closed FJQNs
with probabilisticload patterns.This techniqueappears equallysuc-
cessful whether or not the network to be analyzed contains nested
FJSNs.

In the nonnestedcase both SCAE and SCMI producecompetitive
approximations of expected throughput; this suggests that either
approachwould be useful if system-levelperformancemeasures are
desired, particularly those measures that are relatively insensitiveto
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Table 6 Case study: AAM station parameters

Number of Service Visit
Station Activity description servers discipline Distribution type problem

0 Arrival 1 FCFSa 2-Coxian (3.79,0.65,0.41)b 1
1 Landing 1 FCFS 2-Erlang (0.033) 1
2 Taxi/park 8 Delay 2-Erlang (0.125) 1
3 Maintenance (not concurrent 8 Delay 2-Erlang (0.083) 1

with refueling)
4 Refuel 6 FCFS 2-Erlang (0.983) 0.47
5 Liquid oxygen servicing 8 Delay 2-Erlang (0.45) 0.47
6 Maintenance (concurrent 8 Delay 2-Erlang (0.5) 1

with refueling)
7 Cargo handling 3 FCFS 2-Erlang (0.946) 1
8 Standard ground delayc 8 Delay 2.34 (Deterministic) 1
9 Backout/taxi 8 Delay 2-Erlang (0.125) 1
10 Takeoff 1 FCFS 2-Erlang (0.033) 1
aFCFS ´ � rst-come-� rst-served.
bIn this paper a 2-stage Coxian distribution is denoted 2-Cox (¹1 , ¹2, ®), where ¹i is the service rate in the i th stage and
® is the transition probability between stages.
cStandard grounddelay is built into the scheduleby airlift planners to aid in system level planning;this number is typically
a conservative deterministic estimate of the time required for ground processing.

Fig. 8 Hierarchical decomposition of a nested FJQN.

higher moments of the service time distributions. SCMI is clearly
the preferred method because it alone can provide accurate queue
lengths for stations inside a fork-join structure. The SCMI method
produced estimated throughputs and expected queue lengths with
relative errors of less than two percent in most cases.

SCMI seems to suffer no degradation in performance when the
network topology contains nested FJSNs. However, larger network
populationsmay necessitate the use of a different stoppingcriterion
for Marie’s method.In some casesSCMI appearssensitiveto service
laws having coef� cient of variationgreater than one. However, such
stations are generally not present in models of air� eld operations.

V. Application and Results
We employed the AAM model in a case study of contingency

operations at a representative mobility base. The air� eld has a sin-
gle runway and parking accomodations for up to eight aircraft. All
resources other than cargo processing capability, aircraft refueling
capability,and parkingspaceare unconstrained.The parametersand
aggregate service laws assumed for each service station are given
in Table 6.

The aircraft arrival stream consisted of a list of aircraft by type,
fuel load, cargo load, and so forth. The arrival stream data were
preprocessed to determine the proportion of each type of aircraft,
the proportion of aircraft needing fuel, and the mean and variance
of the interarrival times. Service times for all ground processing

tasks except refueling were determined from existing raw data; for
cargoprocessingthesewere broken out by aircraft type. Pump rates,
fuel truck travel times, and fuel line connect/disconnect times were
providedso that refuelingtime couldbe determinedby aircraft type;
fuelhydrantand truckpump rateswere aggregatedby the proportion
of each resource at the air� eld.

The baseline AAM con� guration was analyzed using the SCMI
decomposition method. Three performance measures typically of
interest to a mobility analyst were calculated:

1) The averageair� eld throughput(the averagenumberof aircraft
leaving the air� eld each hour) D 1.1 departures per hour.

2) The average air� eld response time (the average number of
hours transpiring between aircraft arrival and departure) D 2.8 h.

3) The average number of aircraft on stationD 3.0 aircraft.
Willits18 presents more detailed results of the case study, including
sensitivity analyses with respect to key input parameters.

Figure 9 illustrates the effect of variation in the average interar-
rival time on air� eld throughput.Throughput increases moderately
as the interarrivaltime decreases.Although one might be tempted to
minimize the planned interarrival time (service time for the arrival
station) to force a corresponding increase in throughput, we must
recognizethat this approachwill cause the probabilityof air� eld sat-
uration to increase accordingly. Substantial command-and-control
interventionwould be required to divert plannedarrivals away from
the saturated air� eld.
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Fig. 9 Effect of mean interarrival time on air� eld throughput.

Fig. 10 Effect of mean interarrival time on aircraft on station.

Air� eld response time was found to be insensitive to changes in
the averageinterarrivaltime. This is probablycausedby the domina-
tion of the response times by the standard ground time. In contrast,
as the interarrival time decreases the average number of aircraft on
station increases noticeably, but does not approach capacity (see
Fig. 10). This implies that parking space is not a limiting factor at
this air� eld under these conditions.

We studied the effect of resourceconstraintsby varying the maxi-
mum number of aircraft that could serviced for fuel or processedfor
cargo. All three performancemeasures were sensitive to a decrease
in the number of cargo servers from the baseline value of three
down to one, with throughputdecreasing sharply and response time
and aircraft on station showing a large increase. However, adjust-
ing resources to permit more aircraft to simultaneously undergo
cargo processinghad no signi� cant effect on any performancemea-
sure. Further, the performance measures were largely unaffected
by adjustments to the maximum number of aircraft allowed to
simultaneously refuel. Our sensitivity results imply that movable
resources could be diverted from this air� eld to address shortfalls
elsewhere without substantiallyaffectingair� eld capability,as long
as the air� eld retains the capability to process at least two loads of
cargo at the same time.

To investigate the effect of the standard ground delay on air-
� eld operations, all performance measure values calculated during
the sensitivity analysis were reevaluated with ground delay set to
zero. When this was done, two effects were observed. First, air-
� eld throughputincreasedslightly for low interarrival times, but the
increase dropped to an insigni� cant level as the interarrival time
increased. Second, both the air� eld response time and the average
number of aircraft on station showed a sharp decrease that was con-
sistent in magnitude over all values of the mean interarrival time
studied. This latter effect is intuitive, given the extent to which the
ground delay dominates the other mean service times in the air� eld
� ow (see Table 6). However, the insensitivityof air� eld throughput
to the change indicates that the savings in time are not great enough
to forego the bene� t of including the ground delay in system-wide

planning (ground delay is desirable because it facilitates orderly
management of the complete air� eld system).

VI. Conclusions
The AAM providesa valuablesupplementto high-resolutionsim-

ulation modeling for gaining insights into mobility air� eld capabil-
ity. The speed and accuracy with which the model can be analyzed
make it particularlyuseful for developingfundamentalinsights,per-
forming sensitivityanalyses, as possibly representingbase level ac-
tivity in a largermodel of a completeairliftsystem.The modelcould
also provide useful insights into other types of systems having mul-
tiserver queues, concurrent service activities, and general service
time distributions (e.g., manufacturing).

To examine the accuracy of the analyticalperformancemeasures
with respect to simulation, we calculated the relative error between
each AAM performance measure and the analogous point estimate
obtainedby simulating the same network. Each simulationpoint es-
timate was re� ned until its associated 95% con� dence interval had
a half-width less than or equal to 10 2. This half-width was used
regardless of the magnitude of the point estimate, with the rationale
that changes to queueing network parameters of lesser magnitude
typicallyhave littlepracticalsigni� cance.All 318performancemea-
sure data points calculatedusing the AAM had relativeerrorsof less
than 12%; 80% of these were 5% or less.

The software for the numerical investigationwas implementedon
a Digital Equipment Corporation (DEC) Alpha AXP 2100 Model
500MP workstation containing three 190 MHz DEC 21064 pro-
cessors. To achieve the desired tolerance in the simulation point
estimates, the typical simulation run required 35–45 min of elapsed
system time. In contrast, virtually all of the analytical software runs
produced near-immediate output.
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