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Nested Fork-Join Queueing Network Model
for Analysis of Airfield Operations

Craig J. Willits*
Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio 45433
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This article presents a nested fork-join queueing network model of the synchronized ground processing of
aircraft transiting an airfield. The queueing network is analyzed using a decomposition algorithm that provides
approximatenetwork performance measures such as throughput and expected queue lengths. The results produced
are comparable in accuracy to those produced by simulation, but are generated in much less elapsed time. Using a
case study of contingency operations at a military mobility airfield, we demonstrate the model’s utility for rapidly
developing important insights into operational performance.

I. Introduction

HE success of a modern military campaign often depends on

the rapid air transport of critical resources to a distant the-
ater of operations. To accomplish this mission, the U.S. Air Force
employs a fleet of large cargo aircraft to move people and equip-
ment through a worldwide network of airfields. To plan and execute
large deployments, commanders and mobility planners rely on so-
phisticated modeling and analysis methods to provide meaningful
estimates of operational capability. Particular attentionmust be paid
to throughput capacity and resource bottlenecks at key airfields.

To gain insight into airfield performance, transportation analysts
normally study the flow of aircraft through a series of synchronized
ground processing activities using high-resolutionsimulation mod-
eling techniques. In this paper, however, we approach the problem
through an analytical queueing network model. Our approachis not
meant to completely replace high-resolutionmodeling, which may
be necessary for studying complex airfield processing or resource
allocation schemes. Rather, the approach is designed to provide
rapid insights into the relationship between airfield resource levels,
the flow of mobility aircraft, and airfield throughput capacity. The
model is more general than an earlier method offered by Dietz,’
which required restrictive assumptions about service time distribu-
tions and the aircraft arrival process.

II. Analytical Airfield Model

The general task precedence graph for the ground flow of an air-
craft is shown in Fig. 1. In this graph each box represents a task
that may be required when an aircraft visits the airfield. The flow of
precedence among tasks is from top to bottom, that is, tasks at the
top of the graph must be completed before the tasks below them.
Tasks that begin at the same time are immediately preceded by
an appropriately labeled horizontal bar. “Refuel” and “concurrent
maintenance”are examplesof tasks thatcan beginsimultaneously.If
a bar labeled “synchronize”immediately follows two or more tasks,
those tasks must all be complete before any task below the bar can
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begin. For example, the “liquid oxygen servicing” and “cargo on”
tasks must be complete before the “backout/taxi” task can begin.

If we model the service providers as “stations,” the aircraft as
“customers” that move through the network of stations, and the
number of parking spots as the network capacity N, we can construct
anopen capacitatedqueueingnetwork® thatis logically equivalentto
the flow of tasks shown in Fig. 1. To develop an effective solutional-
gorithm, it is helpful to transformthe open queueing network into an
equivalentclosed network. This transformationis accomplished by
inserting an “arrival” station into the network and artificially setting
the population of the closed network equal to the original network
capacity. The arrival station essentially represents the portion of
the entire airlift system that operates outside the airfield boundary.
When all N customers saturate the airfield portion of the network,
the arrival station is idle, and no further arrivals can be generated.
However, when the airfield is not occupied at capacity at least one
customer occupies the arrival station, and so arrivals are generated
at specified intervals (artificial service times for the single-server
station).

The graph of the resulting closed nested fork-join queueing net-
work, which we will call the Analytical Airfield Model (AAM), is
shown in Fig. 2. The diamond symbols containing F and J represent
fork-joinconstructsthat capture concurrentactivities. Aircraftarriv-
ing at a fork node can be viewed as generating temporary clones that
are rejoined into a single customer at the corresponding join node
when all activities along each clone path are complete. A descrip-
tion of the network stationsis providedin Table 1. Some stations are
visited by all arriving aircraft, whereas others are visited according
to specified probabilities.

To maintain model tractability, we impose the following simpli-
fying assumptions:

1) The firstassumption s the independenceof customerbehavior.
The aircraft processing requirements are a function of the flight
schedule, the aircraft manifest or en-route events, and are not linked
explicitly to any flight line activities. Because the aircraft behave
independently, we assume that the probability that an aircraft visits a
particularservicestation (or a subnetworkof stations) is independent
of the number and type of aircraft at the stations in the network.

2) Steady-state conditions are the second assumption. During
wartime or a contingency, mobility operations are normally con-
ducted around the clock over a period of days, weeks, or even
months. Therefore, it is assumed that equilibrium conditions are
maintained after some initial warm-up period.

3) The third assumption is single customer class. Normally, a
mobility airfield processes different types of aircraft, which may
have different service time distributions at certain network stations
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and different routing probabilities within the network. In the AAM
these differences will not be explicitly modeled. Although this sim-
plification may appear limiting, useful insights can still be gained
by aggregating multiple aircraft classes through the appropriate
selection of routing probabilities, service time distributions, and
the arrival law. This approach will produce aggregate performance
measures that can be used to gain fundamental insights into airfield
capabilities.

III. Model Solution Through Product-Form
Approximation

Exact calculation of network performance measures is not possi-
ble because of analytical complexity,but we can obtain approximate

| AWAIT PARKING SPACE |

TAXI/PARK

| BAGS/PASSENGERS OFF |

UNSCHEDULED
MAINTENANCE

¢ SYNCHRONIZE

NON-CONCURRENT
MAINTENANCE
SYNCHRONIZE
REFUEL

‘ CARGO OFF

the performance measures accurately using a type of queueing net-
work decompositionknown as product-formapproximation (PFA).?
PFA methods use information about the flow in the network to con-
struct a tractable network that has approximately the same steady-
state behavior;the performancemeasures of the new network, which
can be determinedexactlyusinga numberof availablealgorithms >
approximate those of the original network.

In a product-form approximation the original network is parti-
tionedintoa set of subnetworks, which are analyzedin isolation (that
is, as independent networks) to get approximate throughput levels
that are conditioned on subnetwork population. For each subnet-
work an associated exponential server with load-dependentservice
rates is constructed; these service rates are set equal to the condi-
tional throughput levels of the original subnetwork. The through-
put levels are calculated in such a way that flow into and out of
the exponential station closely approximates the flow behavior of
the original subnetwork. A separable network is then formulated
by replacing the subnetworks in the original network topology by
the flow-equivalent servers; the performance measures of this net-
work are used as approximations of those of the original network.
The error in such an approximation originates from two sources:
the assumption of exponential service and the approximationof the
conditional throughputs through isolated analysis.

Building on the work of Dallery and Cao,® Baynat and Dallery
identify four conditionsthata network partition must satisfy in order
for a PFA to be feasible (reasonably accurate)*:

Table1 AAM station descriptions

CONCURRENT Station Activity description Visit probability
MAINTENANCE
CARGO ON 0 Interarrival time 1
1 Landing 1
4 .
SYNCHRONIZE v v SYNCHRONIZE 2 TaX'l/park ) ' 1
| 3 Maintenance (not concurrent with refueling) <1
| BAGS/PASSENGERS ON | 4 R_efu_el - =1
5 Liquid oxygen servicing <1
6 Maintenance (concurrent with refueling) <l
7 Cargo handling <1
8 Standard ground delay 1
9 Backout/taxi 1
10 Takeoff 1
Fig. 1 Task precedence graph.
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1) Customers enter and leave subnetworks as single entities.

2) The behavior of a subnetwork is independent of the behavior
of its complement.

3) The routing between a subnetwork and its complement s inde-
pendentof the number and distributionof customers the subnetwork.

4) Split customers (clones) do not transition between subnet-
works.

If a fork-join queueing network (FJQN) has been feasibly parti-
tioned using the preceding guidelines, then any subnetework con-
taining a fork-join construct can be analyzed using either aggrega-
tion or Marie’s method to get approximate conditional throughput
levels. A discussion of these approaches follows, together with a
summary of how each method can be used to analyze a FIQN.

A. Aggregation

Aggregationhas its roots in the work of Avi-Itzhak and Heyman’
and Chandy et al.®? In this method the subnetwork to be isolated
is analyzed as a closed, independent network. This network is
formed by short-circuiting the subnetwork’s complement (that is,
removing the complement from the network). Approximate condi-
tional throughputlevels are obtained by calculating the throughput
of this new subnetwork for fixed population levels. Chandy et al.
showed that these conditional throughputs are exact if the original
network is separable ® In the case where the network is nearly com-
pletely separable (that is, the behavior of the subnetworks is nearly
mutually independent), the error induced by using aggregation will
be small.?

If the conditional throughputlevels of a FIQN are to be obtained
using the aggregation technique, the isolated fork-join subnetwork
(FISN) would be formed by short-circuiting its complement, as in
Fig. 3. Baynat and Dallery propose transforming this isolated net-
work by creating separate customer chains for each clone and com-
bining the fork node and join buffer into a multichain synchroniza-
tion station with a deterministic zero service time and synchronized
departures. The equivalent network is shown in Fig. 4.
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Fig. 3 Isolated fork-join subnetwork for the aggregation method.

—{[l———— M O—MM O—

S

— I ———— M O—— OT

Fig. 4 Transformed subnetwork for the aggregation method.

B. Marie’s Method

The central idea of Marie’s method'®!! is to analyze the subnet-
work of interest as an isolated, open network with finite capacity
and load-dependentPoisson arrivals. The load-dependentthrough-
put levels of the isolated subnetwork become the load-dependent
mean service rates of the associated exponential server.

Let N be the number of customers in the original closed network,
and let n; be the number of customers in subnetworki (0 <n; < N).
Further,define A; (n;) and v; (n;) as the arrival rate and the conditional
throughputof customers at subnetworki, n; =0, ..., N. Let u; (n;)
be theload-dependentservicerate for the associatedflow-equivalent
exponentialserver,n; =0, ..., N.

Marie’s method makes use of three sets of foundationalequations.
The first equation set, which is derived by applying the Marginal
Local Balance Theorem,'? establishes the throughput levels of the
isolated subnetwork as a function of load n;:

5 = g (ny — 2D ni=1,....N (1)

P;(n;)

The probabilities P;(n;) are the marginal probabilities that n; cus-

tomers occupy subnetwork i; these are found by analyzing the sub-

network in isolation as just described. We get the load-dependent

service rates of the flow-equivalent exponential server by setting
them equal to the throughput levels of the isolated subnetwork:

i) = v;(ny), nj=1,...,N )

The final equation set, which is also derived using the Marginal
Local Balance Theorem, ensures local balance in the approximate
product-form network:
131' n; + 1
)‘i(ni):l’vi(ni"_l)(/\—)s n =0,...
P;(n;)

,N—=1 (3)

The approximate occupancy probabilities 13,- (n;) are derived by an-
alyzing the associated product-form network with any appropriate
technique*>

Marie’s algorithm solves Eqgs. (1-3), for the conditional through-
puts using fixed-pointiteration. The algorithm is as follows:

1) Choose initial values u; (n;) forn; =1,..., N.
2) Calculate A; (n;) using Eq. (3). y
3) Analyze the station in isolation to get P;(n;), n; =0, ..., N.

4) Use Eq. (1) to get v; (n;), n; =1,..., N

5) Calculate the load-dependent service rates w;(n;) for the re-
placement server using Eq. (2).

6) Repeatsteps 2 through 5 until the relative improvementin each
i (n;) value is less than some specified tolerance.

The usual measure of improvementis the maximum relative change
in the elements of the service rate vector:
l’«fm)(”i) — l’«fm_ 1)(”1')
max o <e 4)
LR M; (l’l,)
where m is the iteration index and ¢ is the selected tolerance (typi-
cally set at 1072 or 107%).

Marie’s method is cited in several different studies as an accu-
rate technique for decomposing nonseparable networks.!>~!” The
method compares favorably to aggregation and provides superior
estimates of expected queue lengths in many cases.> Bondi and
Whitt find that Marie’s method is the most accurate and stable of
the decomposition techniques they examine.'®

Baynat and Dallery have extended Marie’s method so that it can
be used to analyze closed networks with R (>1) chains. We employ
multiple chains to distinguish between clone customers within a
fork-join. The derivationis similar to that for the single-chain case,
although each equation set must now be generated for each of the
R chains. With the obvious extensions to the notation, the multiple-
chain analogs to Egs. (1-3) are

Uri (1) = Api (R — 1)+
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Wi () = Vi (1), ni=1,...,N,, r=1...,R (6)

ﬁri n,; + 1
Ari(Myi) = pri (i + 1)A(—)
Pi(n.)
n;=0,...,N, — 1, r=1,....,R (1)
Marie’s method for multiple chains is executed as follows'®:
1) Choose initial values u,;(n,;) for r=1,..., R and n,; =1,
.., N,
2)Forr=1,..., R, calculate A,;(n,;) using Eq. (7).
3) Analyze the station in isolation to get P,;(n,;), r=1,..., R

andn,; =0,...,N,.

4) Use Eq. (5) to get b,;(n,;),r=1,...,Randn,;=1,..., N,.

5) Calculate the load-dependentservice rates i,; (n,;) for the re-
placement server for chain r using Eq. (6).

6) Repeat steps 2 through 5 until the relative improvement in the
i (n,;) values is less than some specified tolerance value.

The usual stopping test is similar to that given in Eq. (4), except
that the maximization is also performed over the R chains in the
network.

If Marie’s method is to be used to decompose a FJIQN, the isolated
FJSN would be formed as an open, capacitated network with load-
dependent Poisson arrivals; this would, in turn, be reformulated as
the equivalent closed network shown in Fig. 5. Notice that the sta-
tion representing the Poisson arrival process has mean service rate
pno(n) =A(N —n),n=1,..., N.Baynatand Dallery’s transforma-
tion of this network is similar to the aggregationcase, exceptthat the
join buffer is combined with the external Poisson arrival process to
form a timed synchronizationstation. This station has mean service
rate po(ng), where ny = min, (n,) and n,, is the number of clones
from chain r waiting in the join buffer. The equivalent network is
shown in Fig. 6.
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Fig. 5 Isolated fork-join subnetwork for Marie’s method.

Fig. 6 Transformed subnetwork for Marie’s method.
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Fig. 7 Using the SC approximation with Marie’s method.

IV. Short-Circuit Approximation
A. Description

Suppose we have a closed queueing network containing a FISN
with a probabilisticload pattern, meaning thata customer may com-
pletely bypass at least one embedded subnetwork, say the ith, with
positive probability p;. An intuitive way to model this behavioris to
introduce feedback loops into the appropriate chains in the isolated,
reformulated FJSN; these feedbackloops allow a customerto bypass
all stations in the chain and return immediately to the synchroniza-
tion station. This strategy, which we will call the short-circuit (SC)
approximation, is graphically illustrated in Fig. 7 (Marie’s method
has been used in the reformulation of the isolated FISN).

The SC approximationrequires an additionalassumption that the
customer clones in the isolated FISN can match interchangeably.
SC produces approximateresults because the matching assumption
may not be true for the original network model. An advantage of
this approach is that the resulting expected increase in throughput
induced by the assumption of interchangeability should partially
offset the observed tendency of Marie’s method to produce conser-
vative approximations.'®

B. Analyzing the Synchronization Station

The feedback loops just described can be dealt with in one of two
ways: they can be incorporated into the internal Markov process
of the synchronization station (internal feedback), or they can be
left as part of the product-form approximation to the isolated FJSN
(external feedback). In the latter case all that is required is to adjust
the relative frequency of visits (“visit ratios”) for the isolated FJSN.
When the feedback loops are incorporatedinto the Markov process,
however, the formulationis more complex. The followingdiscussion
develops the structure of the Markov process for the case of two
clone chains within a fork-joinconstruct. Extension to three or more
chains is straightforward.

We first consider the case where aggregation is used to decom-
pose the original network. Let n; equal the number of chain i cus-
tomers in the join buffer (i =1, 2), and let (n,, n,) be the state of
the synchronization station. Because the Markov process incorpo-
rates a join operation, the only feasible states are those for which
n; =0 or n, =0 (or both). State transition behavior is complicated
by the fact that one or both matching customers can return to the
synchronizationin zero time following a match.

Assume that n;, =0 and 0 <n, <N (where N is the network
population). Define A;(n;) as the arrival rate of chain i customers,
and let the bypass probability p; be the probability that a chain i
customer leaves the synchronizationstation. Further, let

P, (j) = Pr(chain 1 customer causes jchain 2 departures
before leaving), j<n

and let

Pl0 = Pr(chain 1 customer causes n, chain 2 departures,
and stays at station)
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Table 2 State transitions for the aggregation method

Transitions to Rate Conditions
0,n2—j) Pr(j)r1(0) ny € [0, N, j €[0, na]
0.1 PPA1(0) ny (1, N]
A+1(0) ny=0
0,n2+1) A2(0) ny € [0, N —1]

The states that state (0, n,) transitions to, as well as the appropriate
transition rates, are in Table 2.

We need to derive the probabilities P;(j) and P). To get P;(j),
we condition on the number of feedback loops required to produce
J chain 2 departures:

P (j) = Z[Pr(j chain 2 departures| chain 1 departure
i=j
after ith loop) Pr(chain 1 departure after ith loop)]

Clearly
Pr(chain 1 departure after ith loop) = (1 — D T p

and
Pr(j chain 2 departures| chain 1 departure after ith loop)

— i—1 ¢! )i—j J
- j—l P2 pz

Therefore,

00

i — 1 L )
P)=) (; ~ 1) (1= p)' P31 =p) "' py

i=j
o0
i=

i—14j—1 L R
=y : (I=p) "' = p) =7 p
j—1

1
pi(l—p))~p, i(i—“rj—l)

T U=l —(—pyU—ppr =\ -1

x [(1=p)(1 = p)I L= (1= p)(l—p)V~!

_ Pl —p) 7 ?p,
(I=p)l—(1=p)(1—pHl~!

x{1=11=1=p)a—pyr~'} @)
because each term in the infinite series is a negative binomial
density."”

Because the probability that a chain 1 customer remains in the
system after n, chain 2 departuresis (1 — p;)’, we have that

_ ny _ ny—1
Plo = 1”1(’12)1 ZAN ( Py A=) nz—l)
P (I—=p)[1 =1 = p)(d — pr)]

x{1=11= (1= pp( = py1" '} ©)

The probabilities P,(j) and P? are easily derived by exchanging
subscripts in Egs. (8) and (9).

To efficiently derive the transition rate matrix Q for the
Markov process, we first order the 2N + 1 states as follows:
(N,0),(N—1,0),...,1,0), (0,0, (0, 1),...,(0, N=1), (0, N).
Table 3 presents a complete description of the elements of the tran-
sition matrix.

When Marie’s method is used, the process with feedback loopsis
somewhat simpler to formulate because of the nonzero delay after
each synchronization.In this case states exist where both n; and n,
are nonzero. The states that (n,, n,) transitionsto, together with the
appropriate transition rates, are shown in Table 4.

The transition rate matrix Q can be efficiently generated by
ordering the states first on n;, then on n,: (0,0), (0,1),...,

Table3 Column entries for row s of Q;

aggregation method

Column index Rate Conditions
s+J P (j)A2(0) s€[l, N]
N+2 P22,(0) j=1,...,N+1—s
s—1 A (N+1-—y5) sel2, N+1]
s—=J P1(j)21(0) sE[N+2,2N+1]
N PO (0) j=1,....,s=N—1
s+1 M(E—=N-=-1) se[N+1,2N]

Table4 State transitions for Marie’s method

Transitions to Rate Conditions
(n1 +1,n2) Ar(ny) ny <N
(ny,nz+1) A2 (n2) ny <N
(n1—1,n2) p1(1 = p2)po(min[ny, na])

(n1,n2—1) (1= p1) p2peo(min[ny, nz]) ny,ny >0
(ny—1,n3—1) P1papo(min(ny, na])

Table 5 Column entries for row s of Q; Marie’s method

Column index Rate Conditions
s+ N+1 Ai(ny) ny<N
s+ 1 Az (no) ny <N
s—N-—1 p1(1 = p2)po(min[ny, na])

s—1 (1= p1) papo(min[ny, na]) ny,ny >0
s—=N=2 Pp1papo(minfny, na])

(N, N—1), (N, N). When this ordering scheme is followed, the
nonzero entries in row s of Q can be generated according to the
rules shown in Table 5.

C. Extension to Nested FJQNs

Although nesting of fork-join constructs is not explicitly ad-
dressed in the open literature, it makes sense to deal with them
by applying Baynat and Dallery’s unified theory® in a hierarchical
manner. All that is necessary is that the assumptions required by the
unified theory be satisfied by the network partitions at all levels of
the hierarchy.

For the purpose of illustration, suppose we have a FIQN with two
FJSNs, one nested within the other. In this case hierarchicaldecom-
position requires isolated analysis of structures at three levels, as
illustratedin Fig. 8: 1) the nested fork-join construct (network 1); 2)
the FJISN embedded in the nested construct, together with the outer
synchronization station (network 2); and 3) the inner synchroniza-
tion station (network 3). Other individual stations may need to be
analyzed in isolation at any of these three levels.

D. Computational Experience

We conducted a numerical study to examine the performance of
the SC approximation method when applied to FJQNs. Four candi-
date strategies were evaluated: 1) SC with internal feedback, using
Marie’s method to decompose the original network (SCMI); 2) SC
with external feedback, using Marie’s method to decompose the
original network; 3) SC with internal feedback, using aggregation
to decompose the original network; and 4) SC with external feed-
back,using aggregationto decomposethe original network (SCAE).
A variety of different network configurations was studied to ensure
robustconclusions.!® The results suggestthat SCis auseful and gen-
erally highly accurate, approximation technique for closed FJQNs
with probabilisticload patterns. This technique appears equally suc-
cessful whether or not the network to be analyzed contains nested
FJSNs.

In the nonnested case both SCAE and SCMI produce competitive
approximations of expected throughput; this suggests that either
approach would be useful if system-level performance measures are
desired, particularly those measures that are relatively insensitive to
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Table 6 Case study: AAM station parameters

Number of  Service Visit
Station Activity description servers discipline Distribution type problem
0 Arrival 1 FCFS*  2-Coxian (3.79,0.65,0.41° 1
1 Landing 1 FCFS  2-Erlang (0.033) 1
2 Taxi/park 8 Delay  2-Erlang (0.125) 1
3 Maintenance (not concurrent 8 Delay  2-Erlang (0.083) 1
with refueling)
4 Refuel 6 FCFS  2-Erlang (0.983) 0.47
5 Liquid oxygen servicing 8 Delay 2-Erlang (0.45) 0.47
6 Maintenance (concurrent 8 Delay  2-Erlang (0.5) 1
with refueling)
7 Cargo handling 3 FCFS 2-Erlang (0.946) 1
8 Standard ground delay® 8 Delay 2.34 (Deterministic) 1
9 Backout/taxi 8 Delay  2-Erlang (0.125) 1
10 Takeoff 1 FCFS 2-Erlang (0.033) 1

*FCFS = first-come-first-served.

®In this paper a 2-stage Coxian distribution is denoted 2-Cox (i1, ft2, @), where 14; is the service rate in the ith stage and

« is the transition probability between stages.

Standard ground delay is builtinto the schedule by airlift planners to aid in system level planning; this number is typically
a conservative deterministic estimate of the time required for ground processing.
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Fig. 8 Hierarchical decomposition of a nested FJQN.

higher moments of the service time distributions. SCMI is clearly
the preferred method because it alone can provide accurate queue
lengths for stations inside a fork-join structure. The SCMI method
produced estimated throughputs and expected queue lengths with
relative errors of less than two percent in most cases.

SCMI seems to suffer no degradation in performance when the
network topology contains nested FISNs. However, larger network
populationsmay necessitate the use of a different stopping criterion
for Marie’s method. In some cases SCMI appears sensitiveto service
laws having coefficient of variation greater than one. However, such
stations are generally not presentin models of airfield operations.

V. Application and Results

We employed the AAM model in a case study of contingency
operations at a representative mobility base. The airfield has a sin-
gle runway and parking accomodations for up to eight aircraft. All
resources other than cargo processing capability, aircraft refueling
capability,and parking space are unconstrained. The parameters and
aggregate service laws assumed for each service station are given
in Table 6.

The aircraft arrival stream consisted of a list of aircraft by type,
fuel load, cargo load, and so forth. The arrival stream data were
preprocessed to determine the proportion of each type of aircraft,
the proportion of aircraft needing fuel, and the mean and variance
of the interarrival times. Service times for all ground processing

tasks except refueling were determined from existing raw data; for
cargo processing these were broken out by aircrafttype. Pump rates,
fuel truck travel times, and fuel line connect/disconnecttimes were
providedso that refuelingtime could be determinedby aircrafttype;
fuelhydrantand truck pump rates were aggregatedby the proportion
of each resource at the airfield.

The baseline AAM configuration was analyzed using the SCMI
decomposition method. Three performance measures typically of
interest to a mobility analyst were calculated:

1) The average airfield throughput(the average number of aircraft
leaving the airfield each hour) = 1.1 departures per hour.

2) The average airfield response time (the average number of
hours transpiring between aircraft arrival and departure) =2.8 h.

3) The average number of aircraft on station= 3.0 aircraft.
Willits'® presents more detailed results of the case study, including
sensitivity analyses with respect to key input parameters.

Figure 9 illustrates the effect of variation in the average interar-
rival time on airfield throughput. Throughput increases moderately
as the interarrivaltime decreases. Although one might be tempted to
minimize the planned interarrival time (service time for the arrival
station) to force a corresponding increase in throughput, we must
recognizethat this approach will cause the probability of airfield sat-
uration to increase accordingly. Substantial command-and-control
intervention would be required to divert planned arrivals away from
the saturated airfield.
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Airfield response time was found to be insensitive to changes in
the averageinterarrivaltime. This is probably caused by the domina-
tion of the response times by the standard ground time. In contrast,
as the interarrival time decreases the average number of aircraft on
station increases noticeably, but does not approach capacity (see
Fig. 10). This implies that parking space is not a limiting factor at
this airfield under these conditions.

We studied the effect of resource constraintsby varying the maxi-
mum number of aircraft that could serviced for fuel or processed for
cargo. All three performance measures were sensitive to a decrease
in the number of cargo servers from the baseline value of three
down to one, with throughputdecreasing sharply and response time
and aircraft on station showing a large increase. However, adjust-
ing resources to permit more aircraft to simultaneously undergo
cargo processing had no significant effect on any performance mea-
sure. Further, the performance measures were largely unaffected
by adjustments to the maximum number of aircraft allowed to
simultaneously refuel. Our sensitivity results imply that movable
resources could be diverted from this airfield to address shortfalls
elsewhere without substantially affecting airfield capability, as long
as the airfield retains the capability to process at least two loads of
cargo at the same time.

To investigate the effect of the standard ground delay on air-
field operations, all performance measure values calculated during
the sensitivity analysis were reevaluated with ground delay set to
zero. When this was done, two effects were observed. First, air-
field throughputincreasedslightly for low interarrivaltimes, but the
increase dropped to an insignificant level as the interarrival time
increased. Second, both the airfield response time and the average
number of aircraft on station showed a sharp decrease that was con-
sistent in magnitude over all values of the mean interarrival time
studied. This latter effect is intuitive, given the extent to which the
ground delay dominates the other mean service times in the airfield
flow (see Table 6). However, the insensitivity of airfield throughput
to the change indicates that the savings in time are not great enough
to forego the benefit of including the ground delay in system-wide

planning (ground delay is desirable because it facilitates orderly
management of the complete airfield system).

VI. Conclusions

The AAM providesa valuable supplementto high-resolutionsim-
ulation modeling for gaining insights into mobility airfield capabil-
ity. The speed and accuracy with which the model can be analyzed
make it particularlyuseful for developing fundamentalinsights, per-
forming sensitivity analyses, as possibly representingbase level ac-
tivity in a larger model of a complete airliftsystem. The model could
also provide useful insights into other types of systems having mul-
tiserver queues, concurrent service activities, and general service
time distributions (e.g., manufacturing).

To examine the accuracy of the analytical performance measures
with respect to simulation, we calculated the relative error between
each AAM performance measure and the analogous point estimate
obtained by simulating the same network. Each simulation point es-
timate was refined until its associated 95% confidence interval had
a half-width less than or equal to 1072, This half-width was used
regardless of the magnitude of the point estimate, with the rationale
that changes to queueing network parameters of lesser magnitude
typicallyhavelittle practicalsignificance. All 318 performancemea-
sure data points calculatedusing the AAM had relative errors of less
than 12%; 80% of these were 5% or less.

The software for the numericalinvestigationwas implemented on
a Digital Equipment Corporation (DEC) Alpha AXP 2100 Model
500MP workstation containing three 190 MHz DEC 21064 pro-
cessors. To achieve the desired tolerance in the simulation point
estimates, the typical simulationrun required 35-45 min of elapsed
system time. In contrast, virtually all of the analytical software runs
produced near-immediate output.
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